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Abstract

We consider a generator @ = (¢, ... ,¢y) for either a multi-frame or a super-frame
generated under the action of a projective unitary representation for a discrete countable
group. Examples of such frames include Gabor multi-frames, Gabor super-frames and frames
for shift-invariant subspaces. We show that there exists a unique normalized tight multi-frame

(resp. super-frame) generator ¥ = (, ..., ) such that Z]-N:1||¢j - l//jHZSZjALl llgp; — l,bj||2
holds for all the normalized tight multi-frame (resp. super-frame) generators 1 = (1, ...,y )-
We also investigate the similar problems for dual frames and discuss a few applications to
Gabor frames and some other frames.
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1. Introduction

For a given “basis” {x,} in a Hilbert space, it has been an interesting question
how to get a “nice” basis {y,} which is close to the given {x,} and generates the
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same subspace. In the case that {x,} is linearly independent, a well-known approach
is the Gram—Schmidt orthonormalization process. This approach is inherently order-
dependent in that a reordering of {x,} will generally result in an entirely new
orthonormal set. This order-dependent character may not be desirable in some
applications (cf. [FPT]). Moreover, the Gram—Schmidt process also fails when the
given “‘basis” has redundancy property (such a “basis” is called a frame). All these
considerations lead us to seek a different approach which should be order-
independent and also valid for redundancy bases. One such approach is the so-called
symmetric approximation by normalized tight frames recently introduced by Frank
et al. [FPT] for redundancy bases. When {x,} is a linearly independent set, this
symmetric approximation is also called Lowdin orthogonalization (cf. [FPT,AE-
G1,AEG2,GL,Lo)).

In applications we are more interested in those frames with special structures (e.g.
wavelet frames, Gabor frames, frames for shift invariant spaces). So when we
consider tight frame approximation, it is natural to require the tight frame to be of
the same kind. Note that Gabor frames, wavelet frames and many other interesting
frames are generated by a collection of unitary transformations and some (single or
multi) window functions. In all these situations, the symmetric approximation fails
to work when the underlying Hilbert space is infinite dimensional (see [Han,JS]).
Instead of using the symmetric approximations, we approximate the frame generator
by normalized tight frame generators when the underlying frame is generated by a
collection of unitary operators. This leads to the natural question: When do we have
a best normalized tight frame approximation for such frames? The existence and
uniqueness result for such a best approximation was proved in [Han] for frames
which are generated by a single element generator and by a projective unitary
representation of a countable group. This class of frames includes Gabor frames (for
arbitrary lattices and any dimensions) and any frames induced by a group action
such as frames for shift invariant subspaces. Independently, Janssen and Strohmer
[JS] established the same result for Gabor frames in one-dimensional case. However,
the main technique used in [Han] fails to work for multi-frames (See Example 1.1).
The purpose of the present paper is to use a different (more direct) approach to
investigate the tight frame approximation for frames with multi generators. We will
also investigate the tight frame approximations for super frames introduced by
Balan, Han and Larson ([Ba,HL]). To state the problems and the results, we need to
recall some notations and definitions.

A frame for a separable Hilbert space H is a sequence {x,} in H such that there
exist 4, B>0 with the property that

2 2 2
Al P< > [<x x> [P < Bllx]| (1)

holds for all xe’H. The optimal constants (maximal for 4 and minimal for B) are
called frame bounds. When 4 = B =1, {x,} is called a normalized tight frame (or
Parseval frame). A sequence {x,} is called Bessel if we only require the right side
inequality of (1) to hold. In order to introduce the concept of super-frames, we also
need the notion of strong disjointness of frames which was formally introduced in



80 Deguang Han | Journal of Approximation Theory 129 (2004) 78-93

[HL]: Two Bessel sequences {x,} and {y,} are called strongly disjoint if
Z <X, Xn >yn =0

holds for all xeH.
For each frame {x,} there exists a standard dual frame {S~'x,}, which together
with the frame {x,} provides a “reconstruction” formula for elements in H:

x:Z (x,S7'%, > x,, xeH. (2)

where S is the positive invertible linear operator on H defined by

Sx = Z X, Xy > Xy, X€H.

n

This operator S is called the frame operator for {x,}. From the definition of S, it
follows immediately that {S~'/2x,} is a normalized tight frame for . A frame {y,}
is called a dual for {x,} if (1) holds when S~!'x, is replaced by y,. We remark that if a
frame is not a Riesz basis, then it has infinitely many duals.

The symmetric approximation investigated by Frank et al. [FPT] can be phrased
as the following: Let {x,} be a frame for H. A normalized tight frame {y, } for H is
said to be a symmetric approximation of {x,} if the inequality

2 2
ZHZ,,—X,,H >Z||yn_xn|| (3)
n n

is valid for all normalized tight frames {z,} of H.

Many interesting frames are generated by some (usually finite number of)
“window” functions under the action of a collection of unitary operators. For
example, Gabor frames and wavelet frames are of this kind. For convenience, we call
a countable collection U of unitary operators a unitary system if it contains the
identity operator. For @ = (¢, ..., ¢y) with ¢;e™M, if {U¢,: UelU,1<j<N}is a
frame (resp. normalized tight frame) for H, then we call @ a multi-frame generator
(resp. normalized tight multi-frame generator) of length N for Y. Similarly, @ is called
a Bessel sequence generator if /@ is a Bessel sequence.

In the normalized tight frame approximation, if we restrict ourselves to the frames
induced by a unitary system, then the symmetric approximation is not a good choice
since the summation in (3) is always infinite if the given frame is not normalized

tight. In this case we use the natural metric: Let @ = (¢, ..., ¢, ) be a multi-frame
generator for a unitary system /. Then a normalized tight multi-frame ¥ =
(Y1, ..., ¥y) for U is called a best normalized tight multi-frame approximation for @ if
the inequality
S & 2
D0l = willP< Y lldwe = &ll (4)
k=1 k=1
is valid for all the normalized tight multi-frame generator & = (&, ..., &y) for Y. We

remark that it is not hard to check that if ¥ is a best normalized tight multi-frame
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approximation for @, then

N

N
Z Hd)k - l/jk||2 = mm{z ||¢k - éo’(k)”z : éaa}v
k=1

k=1

where the minimum is taken over all the normalized tight multi-frame generators
&= (&, ...,&y) for U and all the permutation ¢ of {1,2, ..., N}.

For a general unitary system U, the best normalized tight multi-frame generators
may not even exist (see [Han]). In this paper we continue to focus our investigation
on a nice class of unitary systems: group-like unitary systems [GH1]. This class
contains many interesting examples including unitary group systems and Gabor
systems for arbitrary lattices (see Section 4 for definitions).

Group-like unitary systems are simply the images of projective unitary
representations for countable discrete groups. Recall that a projective unitary
representation m for a countable discrete (not necessarily abelian) group G is a
mapping g— U, from G into the set of unitary operators on a Hilbert space H such
that U, U, = u(g, h) Uy, for all g, he G, where u(g, h) belongs to the circle group T (cf.
[Va]). In general for a countable set of unitary operators U acting on a separable
Hilbert space H which contains the identity operator, we will call U group-like if

groupU)=TU ={tU : teT, Uel}

and if different U and V in U are always linearly independent, where group(U)
denotes the group generated by U with respect to multiplication. A group-like
unitary system U is always an image of a projective unitary representation n for the
group G = group(U) (see [Han]). For singly-generated frame {U¢ : Ueld}, we have
the following:

Theorem 1.1 ([Han]). Let U be a group-like unitary system acting on a Hilbert space
H and let ¢ be a frame generator for U. Then S~'/2¢ is the unique best normalized tight
[frame approximation for ¢, where S is the frame operator for the frame {U¢ : Uell}.

A crucial ingredient in the proof of the above theorem is the following
parametrization result for all the normalized tight frame generators in terms of
the unitary operators in the von Neumann algebra generated by the system U:

Theorem 1.2. Let U be a group-like unitary system acting on a Hilbert space H and ¢
be a normalized tight frame generator for U. Then weH is a normalized tight frame
generator for U if and only if there exits a unitary operator Aew*(U) such that
n = A¢, where w*(U) is the von Neumann algebra generated by U.

However, such a parametrization result is no longer valid for multi-frames (see
Example 1.1 below). Therefore the approach in [Han] cannot be applied to the multi-
frame case. In Section 2 we will generalize Theorem 1.1 to multi-frame generators
and provide a different approach to this generalization. This new proof is much more
elementary and transparent. Following the same line we will examine the distance
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between a frame and its duals, and we will also give a best normalized tight frame
approximation result for super-frames. In Section 3 we discuss a few applications of
our results to Gabor frames and frames for shift invariant subspaces.

Example 1.1. Let H = L*[0,1] and U = {Mpwn : neZ}, where M, denotes the
multiplication operator by symbol 4. Let @ = (x5, %121 and ¥ =
(%0,1/4), X1/4,1)- Then both ¥ and @ are normalized tight multi-frame generators
(of length 2). However there is NO unitary operator U on H which maps yj ) to
either yg 1 /4) OF x[1/4,) since unitary operators preserve vector norm.

2. Approximation for multi-frames and super-frames

We first generalize Theorem 1.1 to the multi-frame case. Let @ be a Bessel
sequence generator for a unitary system U. We use T to denote the analysis operator

from H to £L*(U x {1, ..., N}) defined by:

N
T‘px:z Z <X, U¢]>6(Ua])7 era
j=1 UelU
where {e(U,j): UeUd,1<j<N} is the standard orthonormal basis for L£*(U x
{1, ...,N}). Then the adjoint operator of Ty is the synthesis operator satisfying:

Tee(U,j)=Ud¢;, Uel,je{l,....,N}.

Lemma 2.1. Let U be a group-like unitary system on H.

@) If &= (¢y,...,05) is a normalized tight multi-frame generator for U, then it is
also a normalized tight multi-frame generator for the group-like unitary system U*,
where U* = {U" : Uell}.

(ii) Suppose that &= (&, ....¢Ey) and n=(ny,...,ny) are two Bessel sequence
generators for U. Then

N N

SN Kb UeH U > =Y > L, UE) CUny gy

=1 UeU j=1 UelU
Proof. This follows immediately from the definition of group-like unitary
systems. [J

Lemma 2.2. Let U be a group-like unitary system on 'H.

(i) Suppose that &= (&, ....,¢y) and w= (n,,...,ny) are two Bessel sequence
generators such that {U&;: UeU,1<j<N} and {Un;: UeU,1<j<N} are

strongly disjoint. Then Z]Ail {n; &> =0.
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(i) Suppose that {U;: UeU,1<j<N} is a dual of {Uy;: UelU,1<j<N}, and
{U¢ - UeU,1<j<N}is a dual of {Un; : UeU,1<j<N}. Then

N L
S by = (m)-
Jj=1 k=1

In particular if ® = ($y, ..., ¢x) and w = (n,,...,n.) are two normalized tight
multi-frame generators for a group-like unitary system U. Then Z]]\;HQSJHZ =

L 2
Zk:l”’?k” .

Proof.

(i) By Theorem 2 in [GH2], there exists @ = (¢, ...,¢x) such that {Ud;:
Uel, j =1,...,K} is a normalized tight frame generator of . Thus

K
Z &> = Z SN np Uiy U, &>

k=1 UelU

=

Z U, iy s UG
Ue

J=1

g
(

where we use Lemma 2.1(ii) in the fourth equality and the strong disjointness in
the last equality.
(i1) can be checked in a similar way. O

Mz

1

<
Il

I
M= I~ I~ T
M=

Z P U*é,><U*n,,¢k>>
>

<¢ka U§j> < Un/7¢k>>

>
Il
Il
—_

Ueld

|
=

)

Theorem 2.3. Let U be a group-like unitary system acting on a Hilbert space H and let

= (¢y, ..., ¢y) be a multi-frame generator for U. Then S~'/>® is the unique best
normalized tight multi-frame approximation for ®, where S is the frame operator for
the multi-frame {U¢; : Uel, j=1,...,N}.

Proof. It is a routine exercise to check that SU = US for all UelU (cf. the proof of
Theorem 1.2 in [Han] for the one generator case). Thus implies that both §—1/2, §—1/4
also commute with every element in U.

Now let ¥ = {y, ..., ¥y} be any normalized tight multi-frame generator for U.
We first prove that

N N
Z (TyTs1peS 2, ST > = Z Vs - (5)
= =
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In fact, by the definition of analysis operator we have that the left side of (5) is
equal to:

N
=3 Z STV, U > KU g, S04,

Since {Uy;: Uel, j=1,...,N} and {US*I/qu :Uel, j=1,...,N} are nor-

malized tight frames, we hdve thdt 1Toll = |Ts-10]] = 1. Therefore from (5), we
have

N N

> Wi |< Y I Ty TsnS by, ST4, ) |

k=1 k=1

fvjz

175 Ts 008~ il 115/ 1l|

>
Il

1S~ e

- 11

<(/)k7 l/2¢k>'

s
Il

1

Hence from Lemma 2.2(ii) and the above inequality we have
> R ) & 2
Z [ — Wull” = Z el + Z [Will” — 2Re{ e, i >
k=1 k=1 k=1

N N N
=D NGl + D182 dillP =2 Red by >
k=1 k=1 k=1
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=

N
ZHWHI+§]B””%H —2) <y, ST Py
k=1

=1

>~

b — S™12 ]I

1
M=

>~
Il

1

This implies that S~!/2® is the best normalized tight multi-frame approximation for
.

Now assume that & = (£, ..., &y) is another best normalized tight multi-frame
approximation for @. Then, we have

N

N
2 - 2
D NGk = bl =D 1157120y — ¢l
k=1 k=1
which implies that Re>"r_, (&, b > = Son_, [1S™4¢,||* by Lemma 2.2(ii).

Write S~1/4® = (S1/4¢,, ...,S~/4¢,) and consider &, ® and S~/*® as vectors in
the direct sum Hilbert space H@® --- @H. Then we have

Re( &, @) = Re( SV4¢, 7140y = ||s7 40|, (6)
However,
NG Xﬂﬁ%n
N N
=D D> D K8, USSP
k=1 j=1 UelU
N N
=33 ST KU, ST P
j=1 k=1 Uel
N

Z 15714117 = 11~ 4o

Therefore we have
(S 574D | =|<E DY Re(E, @) = Re( S', 571 40)
= (IS~ 0|* = ||V (1S,
this implies by the Cauchy—Schwarz inequality that
[<SVAE ST )| = (ISMAE] (IS .

Thus there is 1€ C which implies that || = 1 and S'/4¢ = 25~ '/4®. Therefore ¢ =
JS~'2®. From (S'Y4¢ S~14dy = |(S§'/4¢,S~1/*® Y|, it follows that 2 = 1. Hence
E=S8"12¢, as expected. [
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Remark. We note that 2/S~'/2® is actually also the best normalized tight multi-
frame approximation simultaneously for all the frames U®, (z€R), where @, =
(S*¢y, ..., S*¢y). Indeed, this follows from the fact that S>**! is the frame operator

for frame U, and ($*+1) 2P, = 5120,

We can also use Lemma 2.2 to examine the minimization problem between a
frame and all of its duals. Given a multi-frame generator @ = (¢, ..., ¢y) for a
group-like unitary system U, then S7'®:= (S7!¢,,...,S'¢y) generates the
standard dual of the frame /®. Standard duals have several nice features over the
alternate duals. For example, it is well-known (cf. [DLL]) that a dual Uy with
Y= Ny) is the standard dual if and only if

Zj]il Yoveu 1<, Unj>|2<2j]\;1 Yveullx, UED \2 holds for all xe’H and for any
dual U with & = (&, ..., &y). In the next result we prove that the standard dual also
minimizes its ‘“‘distance” to the frame over all the other duals. A normalized version
for single generator Gabor frames is well known (cf. [Ja]): Let g be a Gabor frame
generator in L?(R). Then the canonical dual S~'g minimizes

el
lgll Iyl

over all dual windows y. The following theorem tells us that this is also true for the
non-normalized case, for multi-windows and for arbitrary group-like unitary
systems.

Theorem 2.4. Let @ = (¢, ...,dy) be a multi-frame generator for a group-like
unitary system U, and n = (n,, ...,ny) be a dual frame generator for UP. Then the
following are equivalent:

(i) Un is the standard dual of UD, i.e. n; = S~'¢,(j = 1, ..., N), where S is the frame
operator for the frame {U¢;: Uel, j=1,...,N}.
) X (lml? = S 1S ¢l
(iii) ZINZI Iln; — (/5j||2<z;\;1 1€ — d)j||2 holds for any dual frame generator &=
(513527 --wéN)'

Proof. We first prove the equivalence between (i) and (ii). Clearly, (i) = (ii). Now
assume (ii) holds. Since both 1 and S~!'® are dual frame generators, it follows from
the definition of duals that U(n — S~'®) and US~'® are strongly disjoint Bessel
sequences. Thus, by Lemma 2.2(i), we have that

N

N
Z H’7j||2 = Z HSil(lsj +(n; — Sild’j)”z

J=1 J=1
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—ZHS ¢;lI° +Z|| s ')

+2Re2 (ST m =Sy

—ZHS ol +Z|| Sl

Therefore condition (ii) implies that n;, = S~ 1(15

Suppose that (ii) holds. We check for (iii). Since (ii) implies (i), we have that
n = S"'®. Let ¢ be any dual frame generator for /®. Then from the above argument
we have that

N N
YIS lIgl

J=1 Jj=1
Thus
N

N
Z H’/Ij_quH = Z ||S71¢j_¢)j||2

Jj=1

~.

N N =

= 2SI+ Do - 2Re DS (570>
= i= ”

N

N N
<D OGP+ Mgl —2Re Y <S>
j=1

i=1 j=1

~.

From Lemma 2.2(ii), we have Z 1 <&, 0,0 = Z]Ail <S’1¢j, ¢; > . Therefore

N
Z I — ;117 < Z ||é,«||2+Z g;lI> —2Re > <&, >
=1 j=1 Jj=1 J=1
N

= Z 1 — 1.

Finally we assume that (iii) holds. Then from the above argument we have
N

N
Z H'ij - d’j”z = Z HS_IQ’)j - ¢j||2-

J=1 J=1

Thus applying Lemma 2.2(ii) again, we obtain Z . |\;1/|| = Zj ST 1(;5 II>. O

At the end of this section we examine the normalized tight frame approximation
for super-frames. Super-frames (or disjoint frames) were formally introduced by
Balan [Ba], Han and Larson [HL] and were extensively studied in those two papers.
Although the definition of super-frames is for general frames, here we restrict
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ourselves to the unitary system generated frames. Let ¢, ...,¢yeH. If
{Up, @ ---@U¢y : Uel} is a frame for the orthogonal direct sum space (super-
space) HM = H@ --- ®H, then we say that & = (¢p,,...,¢dy) is a super-frame
generator. It is a trivial fact that if @ is a super-frame generator, then for each j, U¢;

is a frame for H. Clearly, the converse is not true.
An interesting special case is when the super-frame is composed of strongly disjoint
frames U, ... ,Udpy. In this case we have

D Kx,U¢yUd =0, xeH,

Ueld

holds when j# k. We remark that not every super-frame (¢, ..., ¢ ) is composed of
strongly disjoint frames (see [HL]). The following is immediate from Theorem 1.1 (or
Theorem 2.3):

Theorem 2.5. Let & = (¢, ...,dy) be a super-frame generator for U and S be its
frame operator (acting on the direct sum Hilbert space H™)). Let n = Ny -esly) =

S~ 12peHN. Then y is the unique best normalized tight super-frame approximation
for @.

For a super-frame (¢, ..., ¢») we would also expect that (S;l/zqﬁl, ...,S;,l/zd)N)
is a best normalized tight super-frame generator approximation for (¢, ..., dx),
where S; is the frame operator for frame U¢;. However this is not true in general
since (S;mqﬁl, ...,S§1/2¢N) is not necessarily a normalized tight super-frame
generator. Indeed we have the following:

Theorem 2.6. Let (¢, ..., ¢y) be a super-frame generator for U. Then the following
are equivalent

(M) (Sfl/2¢>1, . S]:,l/zd)N) is a best normalized tight super-frame generator
approximation for (¢, ..., dy) .
(i) (Sl_l/2q’>1, e S;,l/zqﬁ]\,) is a normalized tight super-frame generator.
(i) {U¢,, ...,Udy} is a strongly disjoint N-tuple.

Proof. (i) = (ii) is obvious. For (ii) = (iii) we refer to Theorem 2.9 in [HL]. Now we
check (iii) = (i). Let U¥ = {UW) = U®---@® U : Ueld} be the group-like unitary
system on the direct sum Hilbert space HY =H®---®H and &=
$, D DpyeH". Then & is a frame generator for Y. From Theorem 1.1 we
have that S~'/2¢ is a best normalized tight frame generator approximation for @,
where S is the frame operator of U"®. Write S = (S;) y, v With S; being bounded
linear operator on H. Then the strong disjointness of {U¢,, ...,Ud,} implies that
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1/2

S;=0 when i#j and S;=3S. Thus S2=5"@. .. @S, and so

S712¢ = (8,2, ....Sy P ¢y). O

3. Some applications

3.1. Gabor multi-frames

Let A be a full-rank lattice in RY x R?, and let g(x)e L*(RY). The Gabor family
associated with A and g is the collection:

G(A,g) = {0 g(x —n),  (m,n)eA}.

Such a family was first introduced by Gabor [Ga] in 1946 for the purpose of signal
processing. When G(4, ¢g) is a frame for L2(Rd), we call g a Gabor frame generator.

We define, for any (s, ) e R™“, the translation and modulation unitary operators
are defined by:

T/ (x) = f(x— 1)
and
EJ(X) — e2ni<s,x>f(x)

for all feL*(R?). Then E, and T, are unitary operators on L*(R?). Write U, =
{E Ty : (myn)eA}. We will call Uy a Gabor unitary system. Tt is a trivial exercise
that U4 is a group-like unitary system.

In general, a single function Gabor frame generator does not exist. In fact, a
necessary condition for the existence of a single function Gabor frame generator is
that |detA| <1, where A is a 2d x 2d non-singular real matrix with A = 47>? (cf.
[CDH,DLL,HW1,Rie,RS1,RSt] etc.). Although it is known that this condition is
also sufficient for “most’ of the lattices, it remains an open problem whether this is
true in general (cf. [HW1,HW2]). However, for each lattice 4 we can consider multi-
window generators for Gabor unitary systems: Let gjeLz(Rd) G=1,...,N). If
G(A,9)UG(A,92)U --- U G(A, gn) is a frame for L2(R?), then (g1, ..., gy) is called a
Gabor multi-frame generator. Applying Theorem 2.3 to Gabor multi-frames we
obtain

Corollary 3.1. Let G(A,91)UG(A,g2) - UG(A,gn) be a Gabor multi-frame
generator and S be the associated frame operator. Then (S~'/gy, ...,S7'?gy) is the
unique best normalized tight Gabor multi-frame generator for (g1, ...,gn)-

For the single window (N = 1) case, Theorem 3.1 was proved by Janssen and
Strohmer in [JS] when d = 1 and A = aZ x bZ, and independently, it was proved in
[Han] for arbitrary lattices and arbitrary d. Janssen and Strohmer’s proof uses
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different representations of the Gabor frame operator S which is only available for
special cases.
As a special case of Theorem 2.4, we also have

Corollary 3.2. Let G(A,g1)UG(A,92) - UG(A,gn) be a Gabor multi-frame
generator and S be the associated frame operator. Then

N n
_ 2 2
> gy =S PgIP< D Mgy — hyll
=1

Jj=1

holds for all (hy, ..., hy) such that

f:Z Z <f7e2ni<ﬁl,x>hj(x_£2)>e2ni<£1,x>gj(x_Ez)’ fELZ(Rd)-

j=1 (L1.L2)eA

Remark. Corollaries 3.1 and 3.2 are also true when G(A4,9,)JG(4,92)U
- JG(4,gn) is a Gabor multi-frame generator for the subspace it generates.

3.2. Frames for shift invariant subspaces

Frames for shift invariant subspaces play an important role in wavelet and Gabor
analysis. Let K be a lattice in R?. Recall that V is a shift invariant subspace (SIS for

short) if ¥ is a closed subspace of L*(R“) such that T;(V)< V for every AeA. For
each shift-invariant subspace V', there exists a unique measurable set Q(V") which is
called the spectrum of V. Moreover Q(V) is the support of

N

Go(y) =>_ > 1,y + k)

J=l kek

whenever {Ty¢; : ke K, 1<j< N} is a frame for V', where K is the dual lattice of K

and ¢ is the Fourier transform of ¢. The following is well-known:

Lemma 3.3. (i) {Txh : ke K} is a normalized tight frame for a shift invariant subspace
V if and only if Gi(y) = xowr)(7)-

(i) {Tph : keK} is a frame for V if and only if Gy, is bounded from below and above
on its support.

It is easy to check that if {Tyg:keZ} is a frame for V, then gé’i) = S1/24,
gV

where S is the Fourier transform of the corresponding frame operator S and \/"g% is
defined to be zero when G,(y) = 0. Therefore, from Theorem 1.1, we have .
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Corollary 3.4. Let V be a shift invariant subspace and {Tyg : ke K} be a frame for V
with Q = supp(G,). Then ||—=— §|| minimizes ||h — §|| over all he V such that

-
Gi(7) = 70(7)-

By using Theorem 2.3, the above corollary can be generalized to the multi-frame
case. For this the Gramian matrix is needed. Let @ = (¢, ..., ¢ ) = L*(R). Then the
associated Gramian matrix is the N x N matrix Gg(y) = (Gj(y)), where

Gi(y) = Z bi(y + k)qgj(y + k).

kekK

Let M(y) be the largest eigenvalue of G(y), N(y) be the smallest eigenvalue of G(y),
and N (y) be the smallest non-zero eigenvalue of G(y). The following theorem of
Ron and Shen characterizes the multi-frame generators in terms of the Gramian
matrices:

Lemma 3.5 (Ron and Shen[RS2]). Let V be a shift invariant subspace of L*(R) and
D= (¢y,....0n)< V. Then

(1) {Twep; : ke K, 1<j<N} is a frame for V if and only if M(y) and 1/N*(y) are
essentially bounded on Q(V).

(i) {Tk¢; : ke K,1<j< N} is a normalized tight frame for V if and only if G is a non-
zero projection on Q(V).

Combining this with Theorem 2.3 we have

Corollary 3.6. Let V be a shift invariant subspace of L*(R) and ® = (¢, ..., ¢y) be a
frame generator for V. Write h = (S~'2¢,, ...,S™V2¢y) with S the associated frame
operator. Then

N

Do lIST - gl

J=1

minimizes
. 2
> vy =&l
=1
over all W = (Y, ..., y) =V such that Gy is a non-zero projection for a. e. yeQ(V).

If, in addition, we require that span{Ty¢; : keK} and span{Ty¢; : keK} are
orthogonal for j# £, then the Gramian matrix is diagonal and S*IA/2¢]- = qﬁj\ /Gg.
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Thus
. 2
> |-
j=1 Gy ’
minimizes j]il W — c],')j||2 over all ¥ = (Y, ..., ¥y) < V such that Gy is a non-zero

projection for a. e. yeQ(V).
3.3. Finite group frames

A finite frame is a frame for a finite-dimensional space. Recently there has been a
lot of interests in finite frames because of their usefulness in applications such as
internet coding, wireless communication, quantum detection theory etc. An
important class of finite frames are the frames obtained by a finite group action.
Since we are dealing with finite-dimensional spaces we can assume that H = C". Let
{vi, ...,¥m}<H. Then {v;,...,vm} is a frame if and only if its Gramian matrix
[<¥i,V; > ],1xm has rank n, and it is a normalized tight frame if and only if its Gramian
is a rank n projection.

Now let us consider a unitary representation t of a finite group G on H. Let

G(t,vi, ..., Vk) be the Gramian matrix of {t(g)v; : g€G,1<j<k}. Then we have the
following:
Corollary 3.7. Let G(t,vy, ...,Vk) be a rank n matrix and S be the associated frame

operator. Then

k

—1/2 2 2
Do =STIP< Y Iy =gl
=1 =1

holds for all &,, ..., ¢, eH such that G(t,Xxy, ...,Xk) is a projection of rank ».

>
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