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Abstract

We consider a generator F ¼ ðf1; y ;fNÞ for either a multi-frame or a super-frame

generated under the action of a projective unitary representation for a discrete countable

group. Examples of such frames include Gabor multi-frames, Gabor super-frames and frames

for shift-invariant subspaces. We show that there exists a unique normalized tight multi-frame

(resp. super-frame) generator C ¼ ðc1;y;cNÞ such that
PN

j¼1jjfj � cj jj
2p
PN

j¼1jjfj � cj jj
2

holds for all the normalized tight multi-frame (resp. super-frame) generators Z ¼ ðZ1;y; ZNÞ:
We also investigate the similar problems for dual frames and discuss a few applications to

Gabor frames and some other frames.
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1. Introduction

For a given ‘‘basis’’ fxng in a Hilbert space, it has been an interesting question
how to get a ‘‘nice’’ basis fyng which is close to the given fxng and generates the
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same subspace. In the case that fxng is linearly independent, a well-known approach
is the Gram–Schmidt orthonormalization process. This approach is inherently order-
dependent in that a reordering of fxng will generally result in an entirely new
orthonormal set. This order-dependent character may not be desirable in some
applications (cf. [FPT]). Moreover, the Gram–Schmidt process also fails when the
given ‘‘basis’’ has redundancy property (such a ‘‘basis’’ is called a frame). All these
considerations lead us to seek a different approach which should be order-
independent and also valid for redundancy bases. One such approach is the so-called
symmetric approximation by normalized tight frames recently introduced by Frank
et al. [FPT] for redundancy bases. When fxng is a linearly independent set, this
symmetric approximation is also called Löwdin orthogonalization (cf. [FPT,AE-
G1,AEG2,GL,Lo]).

In applications we are more interested in those frames with special structures (e.g.
wavelet frames, Gabor frames, frames for shift invariant spaces). So when we
consider tight frame approximation, it is natural to require the tight frame to be of
the same kind. Note that Gabor frames, wavelet frames and many other interesting
frames are generated by a collection of unitary transformations and some (single or
multi) window functions. In all these situations, the symmetric approximation fails
to work when the underlying Hilbert space is infinite dimensional (see [Han,JS]).
Instead of using the symmetric approximations, we approximate the frame generator
by normalized tight frame generators when the underlying frame is generated by a
collection of unitary operators. This leads to the natural question: When do we have
a best normalized tight frame approximation for such frames? The existence and
uniqueness result for such a best approximation was proved in [Han] for frames
which are generated by a single element generator and by a projective unitary
representation of a countable group. This class of frames includes Gabor frames (for
arbitrary lattices and any dimensions) and any frames induced by a group action
such as frames for shift invariant subspaces. Independently, Janssen and Strohmer
[JS] established the same result for Gabor frames in one-dimensional case. However,
the main technique used in [Han] fails to work for multi-frames (See Example 1.1).
The purpose of the present paper is to use a different (more direct) approach to
investigate the tight frame approximation for frames with multi generators. We will
also investigate the tight frame approximations for super frames introduced by
Balan, Han and Larson ([Ba,HL]). To state the problems and the results, we need to
recall some notations and definitions.

A frame for a separable Hilbert space H is a sequence fxng in H such that there
exist A;B40 with the property that

Ajjxjj2p
X

n

j/x; xnSj2pBjjxjj2 ð1Þ

holds for all xAH: The optimal constants (maximal for A and minimal for B) are
called frame bounds. When A ¼ B ¼ 1; fxng is called a normalized tight frame (or

Parseval frame). A sequence fxng is called Bessel if we only require the right side
inequality of (1) to hold. In order to introduce the concept of super-frames, we also
need the notion of strong disjointness of frames which was formally introduced in
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[HL]: Two Bessel sequences fxng and fyng are called strongly disjoint ifX
n

/x; xnSyn ¼ 0

holds for all xAH:

For each frame fxng there exists a standard dual frame fS�1xng; which together
with the frame fxng provides a ‘‘reconstruction’’ formula for elements in H:

x ¼
X

n

/x;S�1xnSxn; xAH: ð2Þ

where S is the positive invertible linear operator on H defined by

Sx ¼
X

n

/x; xnSxn; xAH:

This operator S is called the frame operator for fxng: From the definition of S; it

follows immediately that fS�1=2xng is a normalized tight frame for H: A frame fyng
is called a dual for fxng if (1) holds when S�1xn is replaced by yn: We remark that if a
frame is not a Riesz basis, then it has infinitely many duals.

The symmetric approximation investigated by Frank et al. [FPT] can be phrased
as the following: Let fxng be a frame for H: A normalized tight frame fyng for H is
said to be a symmetric approximation of fxng if the inequalityX

n

jjzn � xnjj2X
X

n

jjyn � xnjj2 ð3Þ

is valid for all normalized tight frames fzng of H:
Many interesting frames are generated by some (usually finite number of)

‘‘window’’ functions under the action of a collection of unitary operators. For
example, Gabor frames and wavelet frames are of this kind. For convenience, we call
a countable collection U of unitary operators a unitary system if it contains the
identity operator. For F ¼ ðf1;y;fNÞ with fjAH; if fUfj : UAU; 1pjpNg is a

frame (resp. normalized tight frame) for H; then we call F a multi-frame generator

(resp. normalized tight multi-frame generator) of length N for U: Similarly, F is called
a Bessel sequence generator if UF is a Bessel sequence.

In the normalized tight frame approximation, if we restrict ourselves to the frames
induced by a unitary system, then the symmetric approximation is not a good choice
since the summation in (3) is always infinite if the given frame is not normalized
tight. In this case we use the natural metric: Let F ¼ ðf1;y;fNÞ be a multi-frame
generator for a unitary system U: Then a normalized tight multi-frame C ¼
ðc1;y;cNÞ for U is called a best normalized tight multi-frame approximation for F if
the inequality

XN

k¼1

jjfk � ckjj
2p
XN

k¼1

jjfk � xkjj2 ð4Þ

is valid for all the normalized tight multi-frame generator x ¼ ðx1;y; xNÞ for U: We
remark that it is not hard to check that if C is a best normalized tight multi-frame
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approximation for F; then

XN

k¼1

jjfk � ckjj
2 ¼ min

XN

k¼1

jjfk � xsðkÞjj2 : x; s
( )

;

where the minimum is taken over all the normalized tight multi-frame generators
x ¼ ðx1;y; xNÞ for U and all the permutation s of f1; 2;y;Ng:

For a general unitary system U; the best normalized tight multi-frame generators
may not even exist (see [Han]). In this paper we continue to focus our investigation
on a nice class of unitary systems: group-like unitary systems [GH1]. This class
contains many interesting examples including unitary group systems and Gabor
systems for arbitrary lattices (see Section 4 for definitions).

Group-like unitary systems are simply the images of projective unitary
representations for countable discrete groups. Recall that a projective unitary

representation p for a countable discrete (not necessarily abelian) group G is a
mapping g-Ug from G into the set of unitary operators on a Hilbert space H such

that UgUh ¼ mðg; hÞUgh for all g; hAG; where mðg; hÞ belongs to the circle group T (cf.

[Va]). In general for a countable set of unitary operators U acting on a separable
Hilbert space H which contains the identity operator, we will call U group-like if

groupðUÞCTU :¼ ftU : tAT; UAUg

and if different U and V in U are always linearly independent, where groupðUÞ
denotes the group generated by U with respect to multiplication. A group-like
unitary system U is always an image of a projective unitary representation p for the
group G :¼ groupðUÞ (see [Han]). For singly-generated frame fUf : UAUg; we have
the following:

Theorem 1.1 ([Han]). Let U be a group-like unitary system acting on a Hilbert space

H and let f be a frame generator for U: Then S�1=2f is the unique best normalized tight

frame approximation for f; where S is the frame operator for the frame fUf : UAUg:

A crucial ingredient in the proof of the above theorem is the following
parametrization result for all the normalized tight frame generators in terms of
the unitary operators in the von Neumann algebra generated by the system U:

Theorem 1.2. Let U be a group-like unitary system acting on a Hilbert space H and f
be a normalized tight frame generator for U: Then ZAH is a normalized tight frame

generator for U if and only if there exits a unitary operator AAw�ðUÞ such that

Z ¼ Af; where w�ðUÞ is the von Neumann algebra generated by U:

However, such a parametrization result is no longer valid for multi-frames (see
Example 1.1 below). Therefore the approach in [Han] cannot be applied to the multi-
frame case. In Section 2 we will generalize Theorem 1.1 to multi-frame generators
and provide a different approach to this generalization. This new proof is much more
elementary and transparent. Following the same line we will examine the distance

ARTICLE IN PRESS
Deguang Han / Journal of Approximation Theory 129 (2004) 78–93 81



between a frame and its duals, and we will also give a best normalized tight frame
approximation result for super-frames. In Section 3 we discuss a few applications of
our results to Gabor frames and frames for shift invariant subspaces.

Example 1.1. Let H ¼ L2½0; 1
 and U ¼ fMe2pint : nAZg; where Mh denotes the
multiplication operator by symbol h: Let F ¼ ðw½0;1=2Þ; w½1=2;1
Þ and C ¼
ðw½0;1=4Þ; w½1=4;1
Þ: Then both C and F are normalized tight multi-frame generators

(of length 2). However there is NO unitary operator U on H which maps w½0;1=2Þ to

either w½0;1=4Þ or w½1=4;1
 since unitary operators preserve vector norm.

2. Approximation for multi-frames and super-frames

We first generalize Theorem 1.1 to the multi-frame case. Let F be a Bessel
sequence generator for a unitary system U: We use TF to denote the analysis operator

from H to L2ðU � f1;y;NgÞ defined by:

TFx ¼
XN

j¼1

X
UAU

/x;UfjSeðU ; jÞ; xAH;

where feðU ; jÞ : UAU; 1pjpNg is the standard orthonormal basis for L2ðU �
f1;y;NgÞ: Then the adjoint operator of TF is the synthesis operator satisfying:

T�
FeðU ; jÞ ¼ Ufj; UAU; jAf1;y;Ng:

Lemma 2.1. Let U be a group-like unitary system on H:

(i) If F ¼ ðf1;y;fNÞ is a normalized tight multi-frame generator for U; then it is

also a normalized tight multi-frame generator for the group-like unitary system U�;
where U� ¼ fU� : UAUg:

(ii) Suppose that x ¼ ðx1;y; xNÞ and Z ¼ ðZ1;y; ZNÞ are two Bessel sequence

generators for U: ThenXN

j¼1

X
UAU

/fk;U�xjS/U�Zj;fkS ¼
XN

j¼1

X
UAU

/fk;UxjS/UZj;fkS:

Proof. This follows immediately from the definition of group-like unitary
systems. &

Lemma 2.2. Let U be a group-like unitary system on H:

(i) Suppose that x ¼ ðx1;y; xNÞ and Z ¼ ðZ1;y; ZNÞ are two Bessel sequence

generators such that fUxj : UAU; 1pjpNg and fUZj : UAU; 1pjpNg are

strongly disjoint. Then
PN

j¼1 /Zj; xjS ¼ 0:
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(ii) Suppose that fUfj : UAU; 1pjpNg is a dual of fUcj : UAU; 1pjpNg; and

fUxj : UAU; 1pjpNg is a dual of fUZj : UAU; 1pjpNg: Then

XN

j¼1

/fj;cjS ¼
XL

k¼1

/xk; ZkS:

In particular if F ¼ ðf1;y;fNÞ and Z ¼ ðZ1;y; ZLÞ are two normalized tight

multi-frame generators for a group-like unitary system U: Then
PN

j¼1jjfjjj
2 ¼PL

k¼1jjZkjj
2:

Proof.

(i) By Theorem 2 in [GH2], there exists F ¼ ðf1;y;fKÞ such that fUfj :

UAU; j ¼ 1;y;Kg is a normalized tight frame generator of H: ThusXN

j¼1

/Zj ; xjS ¼
XN

j¼1

XK

k¼1

X
UAU

/Zj;UfkS/Ufk; xjS

¼
XK

k¼1

XN

j¼1

X
UAU

/U�Zj ;fkS/fk;U�xjS

¼
XK

k¼1

XN

j¼1

X
UAU

/fk;U�xjS/U�Zj;fkS

 !

¼
XK

k¼1

XN

j¼1

X
UAU

/fk;UxjS/UZj;fkS

 !

¼ 0;

where we use Lemma 2.1(ii) in the fourth equality and the strong disjointness in
the last equality.

(ii) can be checked in a similar way. &

Theorem 2.3. Let U be a group-like unitary system acting on a Hilbert space H and let

F ¼ ðf1;y;fNÞ be a multi-frame generator for U: Then S�1=2F is the unique best

normalized tight multi-frame approximation for F; where S is the frame operator for

the multi-frame fUfj : UAU; j ¼ 1;y;Ng:

Proof. It is a routine exercise to check that SU ¼ US for all UAU (cf. the proof of

Theorem 1.2 in [Han] for the one generator case). Thus implies that both S�1=2;S�1=4

also commute with every element in U:
Now let C ¼ fc1;y;cNg be any normalized tight multi-frame generator for U:

We first prove that

XN

k¼1

/T�
CTS�1=2FS�1=4fk;S�1=4fkS ¼

XN

k¼1

/ck;fkS: ð5Þ
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In fact, by the definition of analysis operator we have that the left side of (5) is
equal to:

XN

k¼1

XN

j¼1

X
UAU

/S�1=4fk;US�1=2fjSUcj;S�1=4fk

* +

¼
XN

k¼1

XN

j¼1

X
UAU

/S�1=4fk;US�1=2fjS/Ucj ;S�1=4fkS

¼
XN

j¼1

XN

k¼1

X
UAU

/S�1=4U�fk;S�1=2fjS/cj;S�1=4U�fkS

¼
XN

j¼1

XN

k¼1

X
UAU

/S�1=4cj ;U
�fkS/U�fk;S�3=4fjS

¼
XN

j¼1

/SS�1=4cj;S�3=4fjS

¼
XN

j¼1

/cj ;fjS:

Since fUcj : UAU; j ¼ 1;y;Ng and fUS�1=2fj : UAU; j ¼ 1;y;Ng are nor-

malized tight frames, we have that jjT�
Cjj ¼ jjTS�1=2Fjj ¼ 1: Therefore, from (5), we

have

XN

k¼1

/ck;fkS

					
					p

XN

k¼1

j/T�
CTS�1=2FS�1=4fk;S�1=4fkSj

p
XN

k¼1

jjjT�
CTS�1=2FS�1=4fkjj jjS�1=4fkjj

p
XN

k¼1

jjS�1=4fkjj
2

¼
XN

k¼1

/fk;S�1=2fkS:

Hence from Lemma 2.2(ii) and the above inequality we have

XN

k¼1

jjfk � ckjj
2 ¼

XN

k¼1

jjfkjj
2 þ

XN

k¼1

jjckjj
2 � 2Re/fk;ckS

¼
XN

k¼1

jjfkjj
2 þ

XN

k¼1

jjS�1=2fkjj
2 � 2

XN

k¼1

Re/fk;ckS
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X

XN

k¼1

jjfkjj
2 þ

XN

k¼1

jjS�1=2fkjj
2 � 2

XN

k¼1

/fk;S�1=2fkS

¼
XN

k¼1

jjfk � S�1=2fkjj
2:

This implies that S�1=2F is the best normalized tight multi-frame approximation for
F:

Now assume that x ¼ ðx1;y; xNÞ is another best normalized tight multi-frame
approximation for F: Then, we have

XN

k¼1

jjxk � fkjj
2 ¼

XN

k¼1

jjS�1=2fk � fkjj
2

which implies that Re
PN

k¼1/xk;fkS ¼
PN

k¼1 jjS�1=4fkjj
2 by Lemma 2.2(ii).

Write S�1=4F ¼ ðS�1=4f1;y;S�1=4fNÞ and consider x;F and S�1=4F as vectors in
the direct sum Hilbert space H"?"H: Then we have

Re/x;FS ¼ Re/S1=4x;S�1=4FS ¼ jjS�1=4Fjj2: ð6Þ

However,

jjS1=4xjj2 ¼
XN

k¼1

jjS1=4xkjj2

¼
XN

k¼1

XN

j¼1

X
UAU

j/S1=4xk;US�1=2fjSj2

¼
XN

j¼1

XN

k¼1

X
UAU

j/U�xk;S�1=4fjSj2

¼
XN

j¼1

jjS�1=4fjjj
2 ¼ jjS�1=4Fjj2:

Therefore we have

j/S1=4x;S�1=4FSj ¼ j/x;FSjXRe/x;FS ¼ Re/S1=4x;S�1=4FS

¼ jjS�1=4Fjj2 ¼ jjS1=4xjj jjS�1=4Fjj;

this implies by the Cauchy–Schwarz inequality that

j/S1=4x;S�1=4FSj ¼ jjS1=4xjj jjS�1=4Fjj:

Thus there is lAC which implies that jlj ¼ 1 and S1=4x ¼ lS�1=4F: Therefore x ¼
lS�1=2F: From /S1=4x;S�1=4FS ¼ j/S1=4x;S�1=4FSj; it follows that l ¼ 1: Hence

x ¼ S�1=2F; as expected. &
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Remark. We note that US�1=2F is actually also the best normalized tight multi-
frame approximation simultaneously for all the frames UFa ðaARÞ; where Fa ¼
ðSaf1;y;SafNÞ: Indeed, this follows from the fact that S2aþ1 is the frame operator

for frame UFa and ðS2aþ1Þ�1=2Fa ¼ S�1=2F:

We can also use Lemma 2.2 to examine the minimization problem between a
frame and all of its duals. Given a multi-frame generator F ¼ ðf1;y;fNÞ for a

group-like unitary system U; then S�1F :¼ ðS�1f1;y;S�1fNÞ generates the
standard dual of the frame UF: Standard duals have several nice features over the
alternate duals. For example, it is well-known (cf. [DLL]) that a dual UZ with
C ¼ ðZ1;y; ZNÞ is the standard dual if and only ifPN

j¼1

P
UAU j/x;UZjSj2p

PN
j¼1

P
UAU j/x;UxjSj2 holds for all xAH and for any

dual Ux with x ¼ ðx1;y; xNÞ: In the next result we prove that the standard dual also
minimizes its ‘‘distance’’ to the frame over all the other duals. A normalized version
for single generator Gabor frames is well known (cf. [Ja]): Let g be a Gabor frame

generator in L2ðRÞ: Then the canonical dual S�1g minimizes

g

jjgjj �
g

jjgjj

				
				

				
				

over all dual windows g: The following theorem tells us that this is also true for the
non-normalized case, for multi-windows and for arbitrary group-like unitary
systems.

Theorem 2.4. Let F ¼ ðf1;y;fNÞ be a multi-frame generator for a group-like

unitary system U; and Z ¼ ðZ1;y; ZNÞ be a dual frame generator for UF: Then the

following are equivalent:

(i) UZ is the standard dual of UF; i.e. Zj ¼ S�1fjðj ¼ 1;y;NÞ; where S is the frame

operator for the frame fUfj : UAU; j ¼ 1;y;Ng:
(ii)

PN
j¼1 jjZjjj

2 ¼
PN

j¼1 jjS�1fjjj
2

(iii)
PN

j¼1 jjZj � fjjj
2p
PN

j¼1 jjxj � fjjj
2

holds for any dual frame generator x ¼
ðx1; x2;y; xNÞ:

Proof. We first prove the equivalence between (i) and (ii). Clearly, (i) ) (ii). Now

assume (ii) holds. Since both Z and S�1F are dual frame generators, it follows from

the definition of duals that UðZ� S�1FÞ and US�1F are strongly disjoint Bessel
sequences. Thus, by Lemma 2.2(i), we have that

XN

j¼1

jjZjjj
2 ¼

XN

j¼1

jjS�1fj þ ðZj � S�1fjÞjj
2
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¼
XN

j¼1

jjS�1fj jj
2 þ

XN

j¼1

jjðZj � S�1fjÞjj
2

þ 2Re
XN

j¼1

/S�1fj; Zj � S�1fjS

¼
XN

j¼1

jjS�1fj jj
2 þ

XN

j¼1

jjðZj � S�1fjÞjj
2:

Therefore condition (ii) implies that Zj ¼ S�1fj:

Suppose that (ii) holds. We check for (iii). Since (ii) implies (i), we have that

Z ¼ S�1F: Let x be any dual frame generator for UF: Then from the above argument
we have thatXN

j¼1

jjS�1fjjj
2p
XN

j¼1

jjxjjj2:

ThusXN

j¼1

jjZj � fjjj
2 ¼

XN

j¼1

jjS�1fj � fj jj
2

¼
XN

j¼1

jjS�1fjjj
2 þ

XN

j¼1

jjfj jj
2 � 2Re

XN

j¼1

/S�1fj;fjS

p
XN

j¼1

jjxjjj2 þ
XN

j¼1

jjfjjj
2 � 2Re

XN

j¼1

/S�1fj;fjS:

From Lemma 2.2(ii), we have
PN

j¼1 /xj;fjS ¼
PN

j¼1 /S�1fj;fjS: Therefore

XN

j¼1

jjZj � fjjj
2p

XN

j¼1

jjxj jj2 þ
XN

j¼1

jjfjjj
2 � 2Re

XN

j¼1

/xj;fjS

¼
XN

j¼1

jjxj � fjjj
2:

Finally we assume that (iii) holds. Then from the above argument we haveXN

j¼1

jjZj � fjjj
2 ¼

XN

j¼1

jjS�1fj � fjjj
2:

Thus applying Lemma 2.2(ii) again, we obtain
PN

j¼1 jjZjjj
2 ¼

PN
j¼1 jjS�1fjjj

2: &

At the end of this section we examine the normalized tight frame approximation
for super-frames. Super-frames (or disjoint frames) were formally introduced by
Balan [Ba], Han and Larson [HL] and were extensively studied in those two papers.
Although the definition of super-frames is for general frames, here we restrict
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ourselves to the unitary system generated frames. Let f1;y;fNAH: If
fUf1"?"UfN : UAUg is a frame for the orthogonal direct sum space (super-

space) HðNÞ :¼ H"?"H; then we say that F ¼ ðf1;y;fNÞ is a super-frame

generator. It is a trivial fact that if F is a super-frame generator, then for each j; Ufj

is a frame for H: Clearly, the converse is not true.
An interesting special case is when the super-frame is composed of strongly disjoint

frames Uf1;y;UfN : In this case we haveX
UAU

/x;UfjSUfk ¼ 0; xAH;

holds when jak: We remark that not every super-frame ðf1;y;fNÞ is composed of
strongly disjoint frames (see [HL]). The following is immediate from Theorem 1.1 (or
Theorem 2.3):

Theorem 2.5. Let F ¼ ðf1;y;fNÞ be a super-frame generator for U and S be its

frame operator (acting on the direct sum Hilbert space HðNÞ). Let Z :¼ ðZ1;y; ZNÞ ¼
S�1=2FAHN : Then Z is the unique best normalized tight super-frame approximation

for F:

For a super-frame ðf1;y;fNÞ we would also expect that ðS�1=2
1 f1;y;S

�1=2
N fNÞ

is a best normalized tight super-frame generator approximation for ðf1;y;fNÞ;
where Sj is the frame operator for frame Ufj: However this is not true in general

since ðS�1=2
1 f1;y;S

�1=2
N fNÞ is not necessarily a normalized tight super-frame

generator. Indeed we have the following:

Theorem 2.6. Let ðf1;y;fNÞ be a super-frame generator for U: Then the following

are equivalent

(i) ðS�1=2
1 f1;y;S

�1=2
N fNÞ is a best normalized tight super-frame generator

approximation for ðf1;y;fNÞ .
(ii) ðS�1=2

1 f1;y;S
�1=2
N fNÞ is a normalized tight super-frame generator.

(iii) fUf1;y;UfNg is a strongly disjoint N-tuple.

Proof. (i) ) (ii) is obvious. For (ii) ) (iii) we refer to Theorem 2.9 in [HL]. Now we

check (iii) ) (i). Let UN ¼ fU ðNÞ ¼ U"?"U : UAUg be the group-like unitary

system on the direct sum Hilbert space HN :¼ H"?"H and F ¼
f1"?"fNAHN : Then F is a frame generator for UN : From Theorem 1.1 we

have that S�1=2F is a best normalized tight frame generator approximation for F;
where S is the frame operator of UNF: Write S ¼ ðSijÞN�N with Sij being bounded

linear operator on H: Then the strong disjointness of fUf1;y;UfNg implies that
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Sij ¼ 0 when iaj and Sii ¼ Si: Thus S�1=2 ¼ S
�1=2
1 "y"S

�1=2
N and so

S�1=2F ¼ ðS�1=2
1 f1;y;S

�1=2
N fNÞ: &

3. Some applications

3.1. Gabor multi-frames

Let L be a full-rank lattice in Rd � Rd ; and let gðxÞAL2ðRdÞ: The Gabor family

associated with L and g is the collection:

GðL; gÞ ¼ fe2pi/m;xSgðx � nÞ; ðm; nÞALg:

Such a family was first introduced by Gabor [Ga] in 1946 for the purpose of signal

processing. When GðL; gÞ is a frame for L2ðRdÞ; we call g a Gabor frame generator.

We define, for any ðs; tÞARd�d ; the translation and modulation unitary operators
are defined by:

Ttf ðxÞ ¼ f ðx � tÞ

and

Esf ðxÞ ¼ e2pi/s;xSf ðxÞ

for all fAL2ðRdÞ: Then Es and Tt are unitary operators on L2ðRdÞ: Write UL ¼
fEmTn : ðm; nÞALg: We will call UL a Gabor unitary system. It is a trivial exercise
that UL is a group-like unitary system.

In general, a single function Gabor frame generator does not exist. In fact, a
necessary condition for the existence of a single function Gabor frame generator is

that jdetAjp1; where A is a 2d � 2d non-singular real matrix with L ¼ AZ2d (cf.
[CDH,DLL,HW1,Rie,RS1,RSt] etc.). Although it is known that this condition is
also sufficient for ‘‘most’’ of the lattices, it remains an open problem whether this is
true in general (cf. [HW1,HW2]). However, for each lattice L we can consider multi-

window generators for Gabor unitary systems: Let gjAL2ðRdÞ ðj ¼ 1;y;NÞ: If

GðL; g1Þ
S
GðL; g2Þ

S
?
S
GðL; gNÞ is a frame for L2ðRdÞ; then ðg1;y; gNÞ is called a

Gabor multi-frame generator. Applying Theorem 2.3 to Gabor multi-frames we
obtain

Corollary 3.1. Let GðL; g1Þ
S
GðL; g2Þ

S
?
S
GðL; gNÞ be a Gabor multi-frame

generator and S be the associated frame operator. Then ðS�1=2g1;y;S�1=2gNÞ is the

unique best normalized tight Gabor multi-frame generator for ðg1;y; gNÞ:

For the single window ðN ¼ 1Þ case, Theorem 3.1 was proved by Janssen and
Strohmer in [JS] when d ¼ 1 and L ¼ aZ� bZ; and independently, it was proved in
[Han] for arbitrary lattices and arbitrary d: Janssen and Strohmer’s proof uses
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different representations of the Gabor frame operator S which is only available for
special cases.

As a special case of Theorem 2.4, we also have

Corollary 3.2. Let GðL; g1Þ
S
GðL; g2Þ

S
?
S
GðL; gNÞ be a Gabor multi-frame

generator and S be the associated frame operator. Then

XN

j¼1

jjgj � S�1=2gjjj2p
Xn

j¼1

jjgj � hjjj2

holds for all ðh1;y; hNÞ such that

f ¼
XN

j¼1

X
ðL1;L2ÞAL

/f ; e2pi/L1;xShjðx � L2ÞSe2pi/L1;xSgjðx � L2Þ; fAL2ðRdÞ:

Remark. Corollaries 3.1 and 3.2 are also true when GðL; g1Þ
S
GðL; g2Þ

S
?
S
GðL; gNÞ is a Gabor multi-frame generator for the subspace it generates.

3.2. Frames for shift invariant subspaces

Frames for shift invariant subspaces play an important role in wavelet and Gabor

analysis. Let K be a lattice in Rd : Recall that V is a shift invariant subspace (SIS for

short) if V is a closed subspace of L2ðRdÞ such that TlðVÞCV for every lAL: For
each shift-invariant subspace V ; there exists a unique measurable set OðVÞ which is
called the spectrum of V : Moreover OðVÞ is the support of

GFðgÞ :¼
XN

j¼1

X
kA *K

j #fjðgþ kÞj2

whenever fTkfj : kAK; 1pjpNg is a frame for V ; where *K is the dual lattice of K
and #f is the Fourier transform of f: The following is well-known:

Lemma 3.3. (i) fTkh : kAKg is a normalized tight frame for a shift invariant subspace

V if and only if GhðgÞ ¼ wOðVÞðgÞ:
(ii) fTkh : kAKg is a frame for V if and only if Gh is bounded from below and above

on its support.

It is easy to check that if fTkg : kAZg is a frame for V ; then
ĝðgÞffiffiffiffiffiffiffiffi
GgðgÞ

p ¼ Ŝ�1=2ĝ;

where Ŝ is the Fourier transform of the corresponding frame operator S and ĝðgÞffiffiffiffiffiffiffiffi
GgðgÞ

p is

defined to be zero when GgðgÞ ¼ 0: Therefore, from Theorem 1.1, we have
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Corollary 3.4. Let V be a shift invariant subspace and fTkg : kAKg be a frame for V

with O ¼ suppðGgÞ: Then jj ĝffiffiffiffi
Gg

p � ĝjj minimizes jjĥ � ĝjj over all hAV such that

GhðgÞ ¼ wOðgÞ:

By using Theorem 2.3, the above corollary can be generalized to the multi-frame

case. For this the Gramian matrix is needed. Let F ¼ ðf1;y;fNÞCL2ðRÞ: Then the
associated Gramian matrix is the N � N matrix GFðgÞ :¼ ðGijðgÞÞ; where

GijðgÞ ¼
X
kAK̃

#fiðgþ kÞ #fjðgþ kÞ:

Let MðgÞ be the largest eigenvalue of GðgÞ; NðgÞ be the smallest eigenvalue of GðgÞ;
and NþðgÞ be the smallest non-zero eigenvalue of GðgÞ: The following theorem of
Ron and Shen characterizes the multi-frame generators in terms of the Gramian
matrices:

Lemma 3.5 (Ron and Shen[RS2]). Let V be a shift invariant subspace of L2ðRÞ and

F ¼ ðf1;y;fNÞCV : Then

(i) fTkfj : kAK; 1pjpNg is a frame for V if and only if MðgÞ and 1=NþðgÞ are

essentially bounded on OðVÞ:
(ii) fTkfj : kAK; 1pjpNg is a normalized tight frame for V if and only if G is a non-

zero projection on OðVÞ:

Combining this with Theorem 2.3 we have

Corollary 3.6. Let V be a shift invariant subspace of L2ðRÞ and F ¼ ðf1;y;fNÞ be a

frame generator for V : Write h ¼ ðS�1=2f1;y;S�1=2fNÞ with S the associated frame

operator. Then

XN

j¼1

jjS�1=2fj � fjjj
2

minimizes

XN

j¼1

jjcj � fj jj
2

over all C ¼ ðc1;y;cNÞCV such that GC is a non-zero projection for a: e: gAOðVÞ:

If, in addition, we require that spanfTkfj : kAKg and spanfTkfl : kAKg are

orthogonal for jaL; then the Gramian matrix is diagonal and #S�1=2fj ¼ #fj

ffiffiffiffiffiffi
Gf

p
:
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Thus

XN

j¼1

#fjffiffiffiffiffiffi
Gf

p � #fj

					
					

					
					
2

minimizes
PN

j¼1 jjcj � fjjj
2 over all C ¼ ðc1;y;cNÞCV such that GC is a non-zero

projection for a. e. gAOðVÞ:

3.3. Finite group frames

A finite frame is a frame for a finite-dimensional space. Recently there has been a
lot of interests in finite frames because of their usefulness in applications such as
internet coding, wireless communication, quantum detection theory etc. An
important class of finite frames are the frames obtained by a finite group action.
Since we are dealing with finite-dimensional spaces we can assume that H ¼ Cn: Let
fv1;y; vmgCH: Then fv1;y; vmg is a frame if and only if its Gramian matrix
½/vi; vjS
m�m has rank n; and it is a normalized tight frame if and only if its Gramian

is a rank n projection.
Now let us consider a unitary representation t of a finite group G on H: Let

Gðt; v1;y; vkÞ be the Gramian matrix of ftðgÞvj : gAG; 1pjpkg: Then we have the

following:

Corollary 3.7. Let Gðt; v1;y; vkÞ be a rank n matrix and S be the associated frame

operator. Then

Xk

j¼1

jjvj � S�1=2vjjj2p
Xk

j¼1

jjvj � xjjj2

holds for all x1;y; xkAH such that Gðt; x1;y; xkÞ is a projection of rank n:
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